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Numerous experimental and numerical studies have shown that the stability of rotors
is strongly influenced by fluid elements. When considering elements such as journal bearings
or seals, the classical rotordynamic approach has been widely used and validated. On the
other hand, the rigid wheel assumption seems questionable when considering elements such
as fluid leakage at blade tip or secondary flow passages of shrouded impellers. In this paper,
a coupling technique between a fluid and a fully three-dimensional rotating flexible wheel
shaft assembly is presented. This coupling technique considers alternatively the governing
equations of fluid and structure and is based on an interfacing grid concept associated with
a modal representation of the coupled system. A first simple application is used for
illustrating and validating the proposed method. Computed results are compared to results
given by a classical rotordynamic approach. Then the method is applied to a test flexible
wheel–shaft–bearing assembly. Various configurations are studied and the influence of
wheel flexibility on the overall behaviour is illustrated in all cases.
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1. INTRODUCTION

Most of the self-excited motions within turbomachines are caused by fluid forces acting
on the rotor, when energy is transmitted from rotation to vibration [1–4]. Lomakin [5] first
showed the major influence that seals have on the rotordynamic response of centrifugal
pumps. More recently, numerous experimental and numerical studies [6] have shown that
the stability of rotors is strongly affected by fluid elements such as journal bearings, seals,
fluid leakage at blade tip or secondary flow passages of shrouded impellers. The high
pressure, high speed and small clearances needed to raise efficiency and prevent leakage
induce large fluid forces which can cause instability.

The global analysis of the dynamic behaviour of rotating wheel–shaft assemblies is
mostly performed by using the rotordynamic approach [7]. The shaft is modelled as a
beam, the wheels are assumed to be rigid and the fluid forces are reduced to their integrated
effect on the shaft centre line. For the structure, the finite element method is often used.
The shaft is discretized by using beam elements and the wheels are accounted for by their
global mass and inertia. Reliable modelling of the dynamic characteristics of fluid elements
started fairly recently. The bulk flow model, developed by Childs [8, 9], is a predictive tool
widely used to compute the direct and cross-coupled rotordynamic coefficients for annular
seals. With this model, the governing equations are linearized by using a perturbation
analysis for small motions about a centred position. The force coefficients are found by
integration of the first order pressure perturbations along and around the shaft. The
classical bulk flow model was extended by Childs [10] for computation of the rotordynamic
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coefficients induced by shrouded impeller surfaces. Ditzen and Nordmann [11] developed
a finite difference technique to compute seal coefficients. Despite the complex nature of
these analyses, they involve geometry-related restrictions and their accuracy naturally
declines in the case of generally shaped annular flow passages. For modelling geometries
ranging from the housing of an annular seal on the simple end to the shroud-seal assembly
of an impeller stage on the complex end, Baskharone and Hensel [12] proposed a
perturbation technique based on a finite element discretization.

In only a small number of studies has the possible interaction between fluid and local
structural deformations been considered. Iwatsubo and Yang [13] analyzed the effect on
seal dynamics of elastic changes of shaft and seal diameters induced by high pressures.
They showed that the direct stiffness coefficient is significantly influenced by these
deformations and that the damped critical speed of first and second modes is increased.
Desbordes et al. [14] analyzed the influence of elastic deformation of pads on shaft
trajectory inside a three shoe tilting pad bearing. They showed that pad distortion may
largely increase the orbit amplitude and maximum pressure. Frêne et al.[15] showed that
geometry defects related to deformation or to manufacturing tolerances may have
important effects.

On examining the published studies, it appears that journal bearings and seals have
already received considerable attention. Within this field of application, the classical
rotordynamic approach has been largely validated and seems accurate enough. On the
other hand, it appears that interactions involving wheels have not been analyzed
sufficiently. Initially, impellers were thought to create relatively benign rotordynamic
destabilizing forces [16]. More recently, Childs [10] showed that forces developed within
the leakage path between impeller shroud and pump housing are significant, and can even
dominate the resultant forces for reduced clearances. The effect of these forces appears to
be strongly dependent on geometrical configurations and working conditions.

Concerning this latter field of research, two main questions remain open: (i) what are
the validity limits of the rigid wheel assumption applied to shrouded impeller fluid structure
interactions?; (ii) which basic models and coupling techniques should be used when the
accuracy of the rotordynamic approach seems questionable?

The aim of the work presented is to propose a solution to the second question, in order
to obtain a better understanding concerning the first.

2. FLUID–STRUCTURE MODELLING: COUPLING TECHNIQUE

Good prediction of the coupled behaviour of flexible wheel–shaft assemblies requires
three elements of equal importance: first, accurate basic structural and fluid models,
adapted to complex geometry and including all the important effects; and, second, an
appropriate coherent coupling technique between these two models. The structural model
considered has already been presented and validated in previous papers [17, 18] and thus
will be described only briefly here. The development of a fluid model is beyond the scope
of this study, especially since efficient and well adapted approaches already exist. Thus,
the participation of the fluid is considered as generally as possible. The coupling technique,
developed with both efficiency and flexibility requirements to link fully three-dimensional
structural and fluid models, is presented. For application and validation, the problem is
particularized to the classical rotor–bearing interaction.

2.1.  

The basic structural model considered is based on three-dimensional finite element
discretization. Rotational effects such as centrifugal and gyroscopic effects are accounted
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Figure 1. A simple axisymmetrical disc–shaft assembly. Dark elements: basic cyclic symmetrical sector.

for and couplings between the flexible wheel and the flexible shaft are possible. In view
of the large number of degrees of freedom needed for accurate analyses, full advantage
is taken of the cyclic symmetrical property of the structure. Thus, the governing equations
associated with the dynamic problem are written as

[M(bn )]{d� n}+[C(bn )]{d� n}+[K(bn )]{dn}= {Fn}, (1)

where [M] is the mass matrix, [C] is the gyroscopic matrix, [K] is the stiffness matrix
including centrifugal stress stiffening and spin softening, {dn} is the nodal displacement
vector and {Fn} is the vector of nodal forces applied to the structure. The different
quantities in equation (1) are associated with a reference cyclic sector. The behaviour of
the whole system is accounted for by parameter bn , which gives a phase relation between

Figure 2. A stabilized orbit at bearing level: a comparison between computed results and results given by a
classical rotordynamic approach.
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the displacements and the forces of the different sectors p and a reference sector, as in the
following:

{d(p)}= {dc
n} cos (p−1)bn + {ds

n} sin (p−1)bn, (2)

{F(p)}= {Fc
n} cos (p−1)bn + {Fs

n} sin (p−1)bn. (3)

As symbolized in equation (1) by subscript n, the reduced dynamic problem has to be
solved for each of the possible discrete values of bn , given by

bn =2pn/N, n$ [0, N*/2], (4)

where N is the total number of cyclic sectors and N*=N if N is even or N*=N−1 if
N is odd. The cyclic symmetrical forces vectors {Fn} are obtained from the full forces vector
applied to the entire structure, as shown in the Appendix.

Solving equation (1) directly remains too cumbersome for realistic models. As proposed
and validated in references [17, 18], the non-rotating problem is solved first, giving a set
of mode shapes [cn ] that are used to reduce the rotating probelm (1). Upon assuming that

{dn}=[cn ]{qn}, (5)

system (1) becomes

[mn ]{q̈n}+[cn ]{q̇n}+[kn ]{qn}= {fn}, (6)

where [mn ], [cn ] and [kn ] are, respectively, the modal mass, gyroscopic and stiffness matrices.
The modal forces vector, {fn} is obtained from

{fn}=[cn ]{Fn}. (7)

2.2.  

Techniques used classically within the rotordynamic approach, to couple structural and
fluid models, remain simple for two main reasons. First, the rotating structure is considered
to be axisymmetric, allowing modelling with respect to the fixed inertial reference frame
without the emergence of periodic coefficients. Second, the interaction between the fluid
and the rotating structure is considered in a global integrated way, leading to coefficients
that are directly compatible with beam modelling.

In regard to the interaction between a fluid and a fully three-dimensional rotating flexible
wheel–shaft assembly, the coupling techniques involved are inevitably more complex.
Several methods exist, mainly developed within the field of aeroelasticity. Strong coupling
methods, which involve solving the coupled problem with the same type of discretization
and numerical schemes for fluid and structural domains, were not considered. When using
these methods the coupling is simplified but the computational effort needed is much too
great. Furthermore, a coupling technique should be flexible, as designers like to be able
to use different elements for each domain and to refine and validate each mesh
independently. More flexible methods consider the governing equations of fluid and
structure alternatively, with data being passed as a boundary condition between the two
domains [19]. By applying these methods to the problem considered, the following
difficulties have to be solved. (i) Frame difference: the cyclic symmetrical structure shall
be described with respect to the rotating frame, while the fluid is usually described with
respect to the fixed inertial frame. (ii) Discretization difference: the structure is modelled
by using finite elements with displacement degrees of freedom, while the fluid is modelled
by using both finite elements and finite differences with pressure degrees of freedom; the
mesh needed for the fluid is usually far more dense than the mesh needed for the structure.
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(iii) Information loss: the transfer of fluid data is critical, since it concerns highly non-linear
data, with important variation gradients both in space and time; furthermore, this transfer
is done from the fine mesh to the coarser mesh. (iv) Relative motions: due to rotation, the
relative position of fluid and structural meshes is not stationary at the interface between
the two coupled domains.

The first and last points are dealt with by using a time marching integration procedure.
The problem of discretization difference and information loss are dealt with by using an

Figure 3. The test compressor wheel–shaft assembly (courtesy of Framatome Thermodyn).
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Figure 4. The finite element mesh of the basic sector (1/13th of the entire assembly).

interfacing grid associated with a modal representation of the coupled system [20, 21]. The
modal quantities are physical and thus are independent of the frame or of the mesh,
provided that the latter is fine enough to satisfy accuracy requirements. As described in
reference [17], the structural modal quantities, involved in equation (6), are computed by
using the structural mesh. Instead of calculating fluid modal quantities after projection on
to the structural mesh, they are directly computed by using an interfacing grid concept.
The interfacing grid [21] is constituted of planar four-noded finite elements, moves with

Figure 5. The stabilized orbit at bearing level; V=6000 rpm, m=0·01 Pa.s. (F), Flexible wheel (proposed
approach); (R), rigid wheel (rotordynamic approach).
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Figure 6. The stabilized orbit at wheel level; V=6000 rpm, m=0·01 Pa.s. (F), Flexible wheel (proposed
approach); (R), rigid wheel (rotordynamic approach).

the structure and is initially identical to the fluid mesh at the fluid–structure boundary.
For coupling, two transfers are needed. The first is for structural displacements from the
structural mesh to the interfacing grid. This transfer is simple because it involves data with
smooth variations (mode shapes), and is done from the coarse mesh to the fine mesh. The
second concerns fluid pressures, and is done from the fluid mesh to the interfacing grid.
Considering the nature of the interfacing grid, this last transfer is straightforward.

Figure 7. The stabilized orbit at bearing level; V=6000 rpm, m=0·05 Pa.s. (F), flexible wheel (proposed
approach); (R), rigid wheel (rotordynamic approach).
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Figure 8. The stabilized orbit at wheel level; V=6000 rpm, m=0·05 Pa.s. (F), Flexible wheel (proposed
approach); (R), rigid wheel (rotordynamic approach).

The coupling process involves the following steps:

1. Computation of mode shapes [cs
n ] associated with the uncoupled structure at rest,

using the structural mesh. Computation of the structural modal matrices.
2. Mode shape transfer from the structural mesh [cs

n ] to the interface grid [cI
n ].

3. Initialization of the solution {qn}=0.
Then, beginning of the iterative process:
4. Computation of forces applied to the structure {Fe} (unbalance, excitation, etc),

excluding forces associated with the fluid–structure interaction. Computation of the

Figure 9. The stabilized orbit at bearing level; V=11 800 rpm, m=0·01 Pa.s. (F), Flexible wheel (proposed
approach); (R), rigid wheel (rotordynamic approach).
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Figure 10. The stabilized orbit at wheel level; V=11 800 rpm, m=0·01 Pa.s. (F), Flexible wheel (proposed
approach); (R), rigid wheel (rotordynamic approach).

associated modal forces {f e
n }, according to equation (7), after cyclic symmetrical

decomposition via equations (A2, A3) of the Appendix.
5. Solution of system (6) giving {qn}. Computation of the cyclic symmetrical generalized

displacements at the interface, {dI
n}=[cI

n ]{qn}. Computation of the physical displacements
with respect to the rotating frame according to equation (A4), giving {dI}.

6. Transformation of these displacements from the rotating frame {dI} to the fixed
inertial frame {d�I}. Generation of a new fluid mesh.

Figure 11. The stabilized orbit at bearing level; V=11 800 rpm, m=0·05 Pa.s. (F), Flexible wheel (proposed
approach); (R), rigid wheel (rotordynamic approach).
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Figure 12. The stabilized orbit at wheel level; V=11 800 rpm, m=0·05 Pa.s. (F), Flexible wheel (proposed
approach); (R), rigid wheel (rotordynamic approach).

7. Computation of the fluid pressures generated at the interfaces. Computation of the
associated modal equivalent forces {F�I}. Transformation of {F�I} into the rotating frame,
giving {FI}.

8. Decomposition of {FI} into cyclic symmetrical generalized forces {FI
n}. Computation

of the associated modal forces {f h
n }=[cI

n ]{FI
n}.

Steps 4–8 are repeated until the solution converges.
The integration scheme used is the fourth order Runge–Kutta method, which appears

to be efficient in the case of non-linear systems [22]. For modal quantities, the cyclic

Figure 13. The resultant of the hydrodynamic forces in the bearing; V=6000 rpm, m=0·01 Pa.s. (F), Flexible
wheel (proposed approach); (R), rigid wheel (rotordynamic approach).
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Figure 14. The resultant of the hydrodynamic forces in the bearing; V=6000 rpm, m=0·05 Pa.s. (F), Flexible
wheel (proposed approach); (R), rigid wheel (rotordynamic approach).

symmetrical decomposition is not essential for the coupled analysis. The decomposition
is retained to lower the computational memory resources needed and to facilitate the
interpretation of the results.

3. APPLICATION

For the application, the method is particularized to the classical case of rotor–journal
bearing interaction. As the main interest of the proposed method lies in the interaction

Figure 15. The resultant of the hydrodynamic forces in the bearing; V=11 800 rpm, m=0·01 Pa.s. (F),
Flexible wheel (proposed approach); (R), rigid wheel (rotordynamic approach).
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Figure 16. The resultant of the hydrodynamic forces in the bearing; V=11 800 rpm, m=0·05 Pa.s. (F),
Flexible wheel (proposed approach); (R), rigid wheel (rotordynamic approach).

involving shrouded assemblies, this application is not thought to bring additional physical
understanding to the problem. However, before considering more challenging problems,
it has been judged essential to consider a well known case, in order to illustrate and validate
the process developed. The method is first validated by using a simple application. Then
a test wheel–shaft assembly is considered and the influence of wheel flexibility on the
overall behaviour is highlighted.

3.1.   

The flow in the bearing is assumed to be laminar and without inertia. For an
incompressible fluid, without an effect of temperature, the pressure in the film is governed
by the classical Reynolds equation [2, 15]

1
R

1

1u$h3 1P
1u%+

1

1z $h3 1P
1z%=6mV

1h
1u

+12m
1h
1t

, (8)

where m is the dynamic viscosity of the fluid, V is the rotational angular speed of the rotor,
h is the film thickness and P is the pressure in the film. Equation (8) is solved by using
the finite difference method, associated with a Gauss/Seidel iterative procedure with
over-relaxation. Reynolds boundary conditions are considered.

3.2.  

The system presented in Figure 1, is composed of an axisymmetrical disc–shaft assembly,
rigidly supported at one end and mounted on a short bearing at the other end. The length
of the bearing is l=0·02 m, its radial clearance is C=10−4 m and the viscosity of the fluid
is m=0·01 Pas. The length of the shaft is L=0·65 m and its radius is Ra =0·04 m. The
radius of the disc is Rd =0·2 m and its thickness is e=0·02 m. The disc is mounted at
D=0·5 m from the rigid bearing. A vertical force F=1000 N is applied to the rotor at
the bearing level.
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T 1

Equilibrium position and associated hydrodynamic forces

Reference results, Computed results,
rotordynamic approach proposed approach D (%)

X (m) 0·327×10−4 0·316×10−4 3·3
Y (m) −0·602×10−4 −0·633×10−4 5·1
FX (N) 140 150 7·1
FY (N) 747 694 7·9

With the approach considered, 1/6th of the entire axisymmetrical assembly is modelled
by using 30 isoparametric brick finite elements with 20 nodes. The same assembly is also
modelled with a rotordynamic approach [7, 23] by using 15 beam finite elements for the
shaft discretization. For compatibility requirements, the disc is supposed to be rigid in both
cases. Frequency computation and response to unbalance, performed on the isolated
structure [24], show a 5% difference between the results given by the two models. For the
coupled system, two series of data are compared: first, the equilibrium position in the
housing of the rotor rotating at 10 000 rpm and the associated hydrodynamic resultant
forces (see Table 1); and, second, the stabilized orbit, at bearing level, of the rotor
submitted to an unbalance of 10 gm/cm located on the disc (see Figure 2).

On examining Table 1 and Figure 2, it appears that the results computed totally
independently by using the proposed method and a classical rotordynamic approach are
in good agreement. The discrepancies noticed for the coupled system are of the same order
of magnitude as those noticed for the isolated structure.

3.3.    –– 

The method is applied to the test compressor wheel–shaft assembly, developed and
tested by Framatome Thermodyn [25], and already considered in reference [17]. The main
dimensions of the structure, presented in Figure 3, are as follows: (1) impeller outer
diameter=0·685 m, impeller inner diameter=0·196 m, height=0·120 m,
mass=60·3 kg; (2) shaft length=0·5 m, shaft diameter at both ends=0·06 m. As shown
in Figure 4, only 1/13th of the entire assembly is meshed by using 269 brick finite elements
with 20 nodes (5925 degrees of freedom). The structural modelling was validated
previously by using both experimental and numerical results. Computations, presented in
reference [17], have shown the significant influence of wheel flexibility on the overall
dynamic behaviour of the simply supported assembly.

As with the previous application, the rotor is assumed here to be rigidly supported at
one end and mounted in a journal bearing at the other end. The length of the bearing is
l=0·024 m, the radial clearance is C=10−4 m and two different fluid viscosities are
considered: m1 =0·01 Pas and m2 =0·05 Pas. The fluid mesh is a finite difference mesh
constituted with 182 nodes in the circumferential direction and 12 nodes in the axial
direction. Compared to the structural mesh, the fluid mesh is six times finer in the
circumferential direction and twice as fine in the axial direction. A vertical force
F=1000 N is applied to the rotor at the bearing level and an unbalance of 50 gm/cm is
located on the wheel. After a few trials, the time step was set at Dt=10−6 s. In view of
the very considerable computational effort needed, only two rotation speeds were
considered. The first is V1 =6000 rpm and the second, V2 =11 800 rpm, is close to the first
critical speed of the rotor. The initial rotor position is assumed to be at the bearing centre.
Computations were performed until a stabilized orbit was obtained. Two orbits are
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presented, the first at the bearing level and the second at the wheel level. In all cases, the
influence of wheel flexibility is highlighted.

As shown in reference [17], the results given by the flexible wheel model are very close
to those given by the rotordynamic model when the wheel stiffness is increased.
Consequently, the influence of wheel flexibility is fully illustrated by the differences between
the rotordynamic results, referenced R (rigid wheel), and the results given by the proposed
model, referenced F (flexible wheel). The orbits computed at 6000 rpm are presented in
Figures 5–8. At 6000 rpm, wheel flexibility induces a global decrease in the amplitude of
the orbit. The orbit at bearing level remains elliptic and the orbit at wheel level remains
globally centred. As shown in Figures 9–12, the influence of wheel flexibility is more
complex at 11 800 rpm. When considering wheel flexibility, the orbit at bearing level is no
longer elliptic and becomes larger than the rigid wheel orbit. These tendencies are
confirmed by the shapes of the resultant of the hydrodynamic forces, presented in Figures
13–16.

4. CONCLUSIONS

For an accurate prediction of the dynamic behaviour of rotors, one should consider the
coupling mechanisms between the vibrating structure and the surrounding fluid, as well
as the coupling mechanism between the different flexible parts of the assembly. When the
effect of wheel flexibility can be neglected, the classical rotordynamic approach is a
powerful tool. In this work the case in which wheel flexibility effects are significant has
been considered and an adapted coupling technique has been proposed. The coupling
technique involves use of an interfacing grid between the two domains and is based on
a modal representation of the coupled system. A first application, on a simple
axisymmetrical disc shaft assembly, shows that the proposed technique does not reduce
the quality of the model. The validation is based on the comparison between results
computed by using the proposed approach and results computed independently by using
a rotordynamic approach. Then a test compressor wheel–shaft assembly, mounted on a
rigid bearing at one end and on a journal bearing at the other end, has been considered.
The results computed show the significant effect of wheel flexibility on shaft bending
modes. This influence reduces or increases the rotor orbits, depending upon the
configuration considered.
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APPENDIX: DECOMPOSITION OF A FULL NODAL FORCES VECTOR INTO
CYCLIC SYMMETRICAL FORCES VECTORS

The nodal forces {F} are given for the whole structure. In order to be consistent with
a cyclic symmetrical formulation, vector {F} can always be written for each sector p as

{F (p)}= s
N*/2

n=0

({F c
n } cos (p−1)bn + {F s

n } sin (p−1)bn ), (A1)

where N is the total number of cyclic sectors and N*=N if N is even or N*=N−1 if
N is odd. Vectors {Fc

n} and {Fs
n} are obtained after a discrete Fourrier decomposition of

{F},

{F c
n }=An s

N

p=1

{F (p)} cos
2p

N
(p−1)n, {F s

n }=An s
N

p=1

{F (p)} sin
2p

N
(p−1)n, (A2, A3)

with An =2/N if n$ 0 or n$N/2, and An =1/N otherwise.
After decomposition, N*/2 different dynamic problems are solved. Then the real

displacement vector is obtained by recomposition of the different displacement terms of
the series

{d(p)}= s
N*/2

n=0

{d(p)
n }= s

N*/2

n=0

({dc
n} cos (p−1)bn + {ds

n} sin (p−1)bn ). (A4)


